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The optimization of two-dimensional Boolean formulas is studied using percolation theory, rare region
arguments, and boundary effects. In contrast with mean-field results, there is no satisfiability transition as the
constraint density is varied, although there is a logical connectivity transition. In the disconnected phase, there
is a transition in the solution time. The thermodynamic ground state for this NP-hard optimization problem is
unique; local solutions can be adjoined to find the global ground state. These results have implications for the
computational study of disordered materials.
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Complex problems with many degrees of freedom are of
interest to both physicists and theoretical computer scientists.
The overlap is especially strong between the physics of dis-
ordered materials and optimization problems in the typical
case. For example, there is a close correspondence between
the ground states of Ising spin glasses, with up and down
spins, and optimal assignments of Boolean variables, which
can be true or false, in a random logical formula. This cor-
respondence is more than formal as both systems exhibit
phase transitions in the structure of minimal configurations
and in the dynamics of the physical systems or optimization
algorithms[1]. Combinatorial optimization algorithms from
computer science are often employed to simulate disordered
condensed matter systems[2]. Approaches from statistical
physics, including techniques such as replica theory and con-
cepts such as the thermodynamic limit and scaling, have
proven useful in studying the running time of algorithms and
the structure of solution space.

Motivated by work on mean-field Boolean formulas[3]
and progress in understanding models of finite-dimensional
disordered materials, we investigate ensembles of Boolean
formulas whose graphs are two dimensional. These formulas
are composed by conjunctively joining logical clauses, with
each clause formed using nearest neighbor variables. The
optimization problem is to assign truth values to the vari-
ables so as to satisfy the maximum number of clauses. This
problem is analogous to minimizing the number of broken
bonds in an Ising spin glass[4] and is NP hard[5], so that
worst-case realizations are believed to require a time expo-
nential in the problem size to solve. We first decompose the
Boolean formulas into components that contain logical con-
tradictions. These contradictory strongly connected compo-
nents (CSCs) need not percolate even though the clauses
themselves do percolate. Balancing the distribution of these
clusters with the time to find their “ground state” leads to an
exponential divergence in the running time at some density
of clauses for a particular algorithm. We also find an expo-
nentially rapid convergence to a unique ground state as the
size of the problem increases. This suggests that the problem
is easy in the typical case, though it is classified as difficult
in the worst case sense. It may well be that many NP-hard
problems derived from physical systems, such as finding the
ground state configuration for the two-dimensional(2D) spin
glass in a magnetic field[6], are typically solvable in poly-

nomial time. Our results support this possibility. NP-hard
problems with algorithms that typically take polynomial time
on some problem sets are known[5], but have not been
extensively and directly studied for physical problems in fi-
nite dimensions.

We consider finite-dimensional Boolean formulasZ of the
form

Z = ∧,=1
M s∨i=1

K yi
,d, s1d

where ∨ is the logicalOR operation,∧ is the logicalAND

operation, andhyi
,j are literals chosen from a setY

=hx1, . . . ,xN, x̄1, . . . ,x̄Nj of N Booleanvariablesand their ne-
gations. The variables are identified with the vertices of a
two-dimensional lattice. The clauses are the terms∨i=1

K yi
,; we

specialize toK=1,2. A 2-clause contains two neighboring
variables, each negated with probability 1/2. The 1-clauses
are single literals, with probability 1/2 of negation. No two
clauses contain the same set of variables. A sample formula
is depicted in Fig. 1(a). The ensemble is defined by param-
eters a and g, respectively the ratios of the number of
2-clauses toN and 1-clauses toN. Given a truth assignment
xi → hT,Fj for all Boolean variables, a clause is satisfied if
one of the literals in the clause isT. If all clauses are satis-
fied, the formulaZ is satisfied. Determining the existence of
a satisfying truth assignment is the problem of satisfiability
(SAT).

FIG. 1. (a) A finite-dimensional Boolean formula. Each 2-clause
is represented by two segments on an edge. Circles represent
1-clauses. Black segments or circles indicate negated variables,
while the lighter shaded segments or circles represent variables
that are not negated. The formula depicted is
sx1∨x3d∧ sx2∨ x̄4d∧ sx4∨ x̄7d∧ sx̄2d∧ sx6d. (b) An unsatisfiable sub-
graph (left) and its digraph(right). The subgraph’s formula is
sx0∨x1d∧ sx̄0∨ x̄2d∧ sx̄1∨ x̄2d∧ sx2∨x3d∧ sx2∨x4d∧ sx̄3∨ x̄4d. A contra-
dictory cycle(CC) is x2→ x̄0→x1→ x̄2→x3→ x̄4→x2.
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The optimization of the number of satisfied clauses inZ
can be mapped to the problem of determining the ground
state of a spin glass in a heterogeneous field. This mapping
translates Boolean assignmentsxi =hF,Tj to spin variables
Si =h−1, +1j. A bond energyE, can be assigned to a clause
sy0

,∨y1
,d connecting variablesxi andxj via [3]

E, =
J

4
f1 − Dsy0

,dSi − Dsy1
,dSj + Dsy0

,dDsy1
,dSiSjg, s2d

whereDsy0
,d=1 if y0

,=xi andDsy0
,d=−1 if y0

,= x̄i and similarly
for j (nearest neighbor toi) replacing 0 with 1. The total spin
glass energyE is given byE=o,=1

M E,. Any clause that is not
satisfied costs an energyJ; the existence of anE=0 ground
state is equivalent to satisfiability of the Boolean formula.

Resolution[5] is a method that can be used to quickly
decide SAT forKø2. This procedure is equivalent to map-
ping each 2-clause to a pair of logical implications and
searching for “contradictory cycles”(CCs). For example, the
clausex1∨x2 is mapped tox̄1→x2 and x̄2→x1. Clauses with
K=1 map to a single implication, e.g.,x̄1 becomesx1→ x̄1.
The Boolean formula can be represented by an implication
directed graph(digraph) G=sY,Ed with 2N vertices and
s2a+gdN edgesE. For a sample mapping, see Fig. 1(b). The
formulaZ cannot be satisfied if there is a CC, which is a path
p in G that connects a variable to its negation and vice versa,
i.e., p=sxi →xj . . .→ x̄i → . . .→xid. The existence of a CC
can be decided in time linear in the size ofE [7].

We find that there are CCs for anya.0 (takingg=0), as
N→`. Defining a1/2sNd as the value ofa for which 1/2 of
the N-variable formulas are satisfiable,a1/2sNd→0 as N
→` (see Fig. 2). This crossover is coarse, in that the width
of the crossover from low to high probability of satisfiability
is proportional toa1/2sNd for largeN. This is to be contrasted
with random mean-fieldK=2 formulas where, forN→`,
there is a sharp SAT to UNSAT phase transition(the prob-
ability that a formula is satisfiable is 1 fora,ac=1 and 0

for largera). This difference results from small CCs, which
are exponentially rare in the mean-field case but appear with
Poissonian statistics in finite dimensions at anya.

The location of the SAT/UNSAT crossover can be com-
puted by an expansion ina. Some subgraphs are “forcing,”
i.e., in all satisfying assignments one of the variables has a
fixed truth value. The smallest unsatisfiable graph is found
by joining two contradictory forcing subgraphs. An example
of this graph type is depicted in Fig. 1(b). On the triangular
lattice, these subgraphs have densityrnsad=sa6/2734d
+Osa7d. The density of the simplest unsatisfiable graphs on
the square lattice isrhsad=sa8/216d+Osa9d. In general, if
the smallest unsatisfiable subgraph hasr bonds and density
cra

r, the probability of satisfiability isPSATsNd=s1−cra
rdN,

to lowest order ina, giving a1/2sNd<scr
−1/rln 2dN−1/r. We

plot numerical results and analytic expansions fora1/2sNd in
Fig. 2, which includes the analytic corrections to next order
in a [seven-edged subgraphs with densitys52/2737da7

+Osa8d on the triangular lattice and nine-edged subgraphs
with densitysa9/216d+Osa10d on the square lattice].

We also plot analytic estimates and numerical results for
a1/2sNd for the 1-in-2-SAT problem in Fig. 2. While a clause
in 2SAT (i.e., K=2) is satisfied if either literal is true, a
clause is satisfied in 1-in-2-SAT when exactly one literal in a
clause is true. The 1-in-2-SAT problem maps both to an Ising
spin glass in the absence of a magnetic field and to the two-
color problem[8]. The smallest unsatisfiable graphs are frus-
trated cycles, givinga1/2sNd<3sN/ ln 2d−1/3 and a1/2sNd
<25/4sN/ ln 2d−1/4, for the triangular and square lattices,
respectively.

Given the lack of a sharp SAT/UNSAT transition, due to
the existence ofsmall unsatisfiable graphs, we have investi-
gated the percolation oflarge unsatisfiable graphs as a phase
transition. We study these graphs within the context of
MAXSAT, which is the problem of minimizing the number
of unsatisfied clauses. In two dimensions, the determination
of the ground state for the Ising spin glass(or MAX-1-in-2-
SAT) is in P [6], while determining the ground state for pla-
nar MAXSAT with K=2 is NP-hard. We studied the CSCs,
sets of literals that contain a CC and for which there is a
directed path from any literal to any other in the set. We find
that the probability of having a spanning CSC has a transi-
tion that becomes sharper with increasingN, with a critical
value for a of aS=1.82454s5d on the triangular lattice[aS

=1.8128s6d on the square lattice]. The cluster size distribu-
tion nss,ad at criticality behaves asnss,aSd,s−t, with t
=2.02s5d. The scaling of the probability for a spanning CSC
near aS gives a correlation length exponent ofn=1.32s3d.
These values are consistent with standard percolation, where
t=187/91 andn=4/3 [9].

In mean-field graphs, there is a connection between the
percolation of directed half-cycles(paths fromx to x̄) and
connectivity percolation[10]. This connection is made by
trimming paths in the implication digraph of 2N literals and
projecting them onto a connectivity graph ofN variables.
The edge probabilityp in the connectivity graph is related to
the 2-clause probabilityp̃ via p̃=2p−p2. The construction
directly carries over to finite dimensions. However, in mean
field, the half-cycle percolation coincides with the SAT/

FIG. 2. Plot ofa1/2sNd, the clause density at which 1/2 of the
graphs are satisfiable, as a function of lattice sizeN. Symbols indi-
cate numerical results for 2SAT and 1-in-2-SAT(Ising spin glass)
on triangular and square lattices. Curves are analytic approxima-
tions found in a small subgraph expansion.
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UNSAT transition, while in finite dimensions we are inter-
ested in CSC percolation. Certainly the half-cycle percola-
tion threshold sets a lower bound on CSC percolation and it
is not surprising that CSC percolation appears to be in the
same universality class as connectivity percolation(also see
[11]).

The decomposition of the graphs into CSCs speeds up
exact search algorithms for MAXSAT. We apply this decom-
position to estimate running times. We used a MAXSAT
code[12] that first finds a heuristic bound to the solution and
then applies an exact Davis-Putnam-Loveland-Logemann
(DPLL) search. Each CSC cluster is loaded into the algo-
rithm individually [13]. The running time measuret is the
number of “backtracks” that are executed while partially ex-
ploring the tree of all possible assignments. The sum of the
unsatisfied clauses from each cluster gives the minimal num-
ber of unsatisfied clauses for the entire formula. As is to be
expected from percolation theory, whena,aS, the distribu-
tion of sizes of the CSCs, is exponentially decaying in the
cluster size,nss,ad,e−s/sjsad, with sj~jd~ saS−ad−dn. In ad-
dition, plotting our results for the median number of back-
tracks for each cluster, we find that the median running time
of the DPLL-type algorithm grows exponentially with the
cluster size,t*ss,ad,es/stsad. Balancing these two exponen-
tials implies the existence of a transition in the behavior of
the running time onN. Whensjsad,stsad, the median run-
ning time for a sample,T*sL ,ad, is bounded by a multiple of
the system volume,T*sL ,ad,L2. However, whensj.st an
estimate for the largest cluster size in atypical finite sample

givesT*sL ,ad,L2st/sj. The meanrunning time,T̄sL ,ad, di-
verges exponentially withL. The separation between linear
and superlinear median time behaviors defines the transition
location aG, with aG,aS, via sjsaGd=stsaGd. Figure 3
shows convolutions of the cluster size distributionnss,ad
and the median timet*ss,ad as a function of size. The
change from negative to positive slope on the semilogarith-
mic plot gives aG<1.3 for the DPLL code we use. This
slowing down of the algorithmic dynamics is similar to that

for the dynamics of random magnets[14] and is reminiscent
of the change from the easy-SAT to hard-SAT phases in ran-
dom graphs[1].

Despite the divergence of the running times for the ex-
haustive DPLL-type algorithms, we expect that the ground
states can be found in time proportional to the system vol-
ume in the typical case, even above the CSC percolation
transition. Assuming that the droplet picture describes finite-
dimensional spin glasses, the presence of a random magnetic
field destroys the spin glass phase[15]. So while the CSCs
percolate, the effects of frustration remain localized over
some length scale. The ground state is unique and insensitive
to boundaries. If the convergence to a unique state isexpo-
nential with size, a heuristic algorithm of solving subsystems
and patching together the subsolutions might be useful.

To test whether the ground state is unique, we study the
effect of boundary conditions, similar to studies of the Ising
spin glass[16]. By comparing ground states for a system of
linear sizeL and an expanded system of linear sizeL8.L,
one can determine if the ground state is unique. If the solu-
tions in a common subsystem of linear sizew become fixed
as L and L8 diverge, a unique ground state exists in the
thermodynamic limit. Note that the ground state must be
unique fora,aS, as the logical structure of the graph does
not percolate.

Since the ±J spin glass with magnetic field(equivalent to
optimal assignments for MAX2SAT) has many degenerate
ground states, we study the weighted MAX2SAT
(WMAXSAT ) question, where the degeneracy is broken, to
be able to compare ground state solutions directly. We add
1-clauses,g=0.2, to study sparser graphsfaSsg=0.2d,a
=1.7g and thus a larger range system of system sizes. Each
clause has a weight, chosen uniformly in the intervalf0,1d,
and the optimization problem is now to minimize the sum of
the weights of the unsatisfied clauses.

We estimatePs2L ,L ,wd, the probability that there is a
change in the central region of areaw2 when the system size
expands from L to 2L [16], by sampling from the
WMAXSAT ensemble. To be able to complete the simula-
tions, we impose an upper limitB on the number of back-

FIG. 4. Logarithm-linear plot ofPs2L ,L ,wd for a=1.7 andg
=0.2 for weighted MAX2SAT. The bound on backtracks isB. The
lines are exponential fits for thew=2,4, B=53106 data.

FIG. 3. Convolution of the median number of backtrackst*ss,ad
with the CSC cluster size distributionnss,ad, wheres is the cluster
mass. The clause densitya is less than the percolation valueaS

<1.8, for these curves.
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tracks in DPLL(some samples are not solved) and studyP
for increasingB. For bothw=2 andw=4, P is well fit by
exponentials inL with the same slope, in the limit of largeB
(see Fig. 4). (A power-law fit gives an exponent less than −2,
which is inconsistent with a fractal domain wall picture for a
model with two states[16].) For a=1.7 andg=0.2, we esti-
mate a correlation length ofj=2.5±0.3. The exponential
approach to a unique state holds for alla and g that we
explored.

Given this result, we tested a heuristic WMAXSAT algo-
rithm for samples of lengthL8 in which subsamples of length
L are solved exactly, withj!L,L8. For each subsample,
the truth assignment within a window of lengthw!L cen-
tered on the subsample is recorded. This process is iterated
until the windows cover the sample. Given the exponential
convergence to a unique state, we expect the mean error of
this heuristic to scale no worse thansL8d2e−L/j. We tested this
expectation directly by comparing the patched solution with
the exact global solution. Fora=1.7, g=0.2, L8=16, and
w=2, the mean errornerr is well fit by an exponential inL,
nerr,exps−L /jd with j=2.2±0.1. The ability of this algo-
rithm to find exact global solutions, controlled by subsample

size L, is to be contrasted with similar approaches to the
traveling salesperson problem, where such a decomposition
method provides an excellent approximation[17], but, with
high probability, fails to give an exact result. We note that
this method would also fail for the 2D Ising spin glass,
wherePs2L ,L ,wd is a power law rather than an exponential.

To conclude, we have studied the problem of optimally
satisfying Boolean formulas in finite dimensions. While there
is no thermodynamic SAT to UNSAT transition, there is a
percolation transition in the logical structure of the formulas
as the clause density is increased, that is apparently in the
class of standard percolation. Below this transition, we use
rare region arguments to predict a transition in the mean
running time of an optimization algorithm. We also find that
the ground state is unique even in the high clause density
regime; the exponential insensitivity to the boundaries sug-
gests that patching algorithms can provide exact solutions
with high probability.
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